
PUBLIC HEALTH AND MANAGEMENT

AMT, v. II, no. 4, 2012, p. 180

BUILDING AN EFFECTIVE USER-INTERFACE FOR MEDICAL
DATABASES

P. OLAH1, M. MARUSTERI2, MONICA SUCIU3, H. SUCIU4, DANIELA DOBRU5

1PhD candidate University of Medicine and Pharmacy Tg. Mureş, 2,3,4,5University of Medicine and Pharmacy Tg. Mureş

Keywords: medical
databases, healthcare
information systems,
user interface

Abstract: Healthcare Information Systems (HIS) generally rely on large databases that store medical
data. Apart from the specific issues related to the design of the data structures, these systems present a
challenge to the developer regarding the architecture of the external level of the database, closely
related to the building of the user interface. This paper discusses three specific issues related to the user
interface of a medical database (The Temporal Property, The Allocation Process and The Open
Attribute List Specialization) using a data-oriented approach for the external level. The approach is
mostly based on data views, constructed on the server side and on the client application side. A small
number of stored procedures however are necessary to implement the full functionality of the system. In
our approach, most of the complexity of these processes is embedded in the queries that are run against
the database. These queries can often be complex and time consuming. Two major issues arise from
here: first, complexity can lead to inconsistent presentation of the same data (we are considering large
information systems) and second, large queries can severely affect the overall performance. These are
the factors which the designers of such a system must control in order to reach an acceptable balance.
By using the presented techniques, software developers can easily build user interfaces that present
basic or medium-complex functionality, while having the benefits of standardization. For highly complex
functionality, more advanced patterns and technologies are needed, which will be presented in a future
paper.

Cuvinte cheie: baze de
date medicale, sisteme
informatice în domeniul
medical, interfaţa cu
utilizatorul

Rezumat: Sistemele Informatice din domeniul Medical (SIM) se bazează în general pe baze de date mari
care stochează date medicale. În afară de problemele specifice legate de proiectarea structurilor de
date, aceste sisteme prezintă o provocare pentru dezvoltatori în ceea ce priveşte arhitectura nivelului
extern al bazei de date, strâns legată de construirea interfeţei cu utilizatorul. Această lucrare prezintă
trei aspecte specifice legate de interfaţa cu utilizatorul a unei baze de date medicale (Proprietatea
temporală, Procesul de alocare şi Lista deschisă de atribute) folosind o abordare orientată spre date
pentru nivelul extern. Abordarea se bazează mai mult pe vederi, construite pe partea de server şi pe
partea de aplicatie client. Acestea pot fi completate de un număr redus de proceduri stocate pentru a
implementa funcţionalitatea completă a sistemului. În modul nostru de abordare, complexitatea acestor
procese este în mare parte încorporata în interogări care sunt rulate pe serverul bazei de date. Aceste
interogări pot deveni însă complexe si consumatoare de timp. Două probleme majore apar de aici: în
primul rând, complexitatea poate duce la prezentarea inconsistentă a aceloraşi date (avem în vedere
sisteme informatice de mari dimensiuni) şi în al al doilea rând, interogări complexe pe volume mari de
date pot afecta grav performanţa generală. Aceştia sunt factorii pe care designerii unui astfel de sistem
trebuie să îi controleze, în scopul de a ajunge la un echilibru acceptabil. Prin utilizarea tehnicilor
prezentate, dezvoltatorii de software pot construi cu uşurinţă interfeţe utilizator care prezintă o
funcţionalitate de bază sau mediu-complexă, beneficiind în acelaşi timp şi de avantajele standardizării.
Pentru o funcţionalitate mai complexă, sunt necesare modele şi tehnologii avansate, care vor fi
prezentate într-o lucrare viitoare.

1Corresponding author: P. Olah, Str. Ghe. Marinescu, Nr. 50, Cod 540136, Târgu Mureş, România, E-mail: olah_peter@yahoo.com, Tel: +40265
212111
Article received on 20.08.2012 and accepted for publication on 28.09.2012
ACTA MEDICA TRANSILVANICA December 2012;2(4):180-182

INTRODUCTION
Healthcare Information Systems (HIS) generally rely on

large databases that store medical data. Apart from the specific
issues related to the design of the data structures, these systems
present a challenge to the developer regarding the architecture of
the external level of the database, closely related to the building
of the user interface. The main issues that we have encountered
while building our HIS are the following:

- The Filter Processing – filtering data by different
criteria;

- The Order Processing – sorting data to fit the user’s
needs;

- The Synchronization Process – filtering subsets of data
according to a currently selected value;

- The Temporal Property – managing data that has a
limited validity in time;

mailto:olah_peter@yahoo.com

PUBLIC HEALTH AND MANAGEMENT

AMT, v. II, no. 4, 2012, p. 181

- The Allocation Process – associating datasets to a
given record in the database;

- The Open Attribute List Specialization – managing
data which has a growing list of properties associated;

- The processing of complex medical data structures-
trees and multitrees;(1)

- The reporting process – generating useful information
for the user.

The approach is mostly based on data views, constructed
on the server side and on the client application side. A small
number of stored procedures however are necessary to
implement the full functionality of the system.

PURPOSE
In this paper we will discuss three specific issues

related to the user interface of a medical database using a data-
oriented (2) approach for the external level (The Temporal
Property, The Allocation Process and The Open Attribute List
Specialization).

METHODS
The software development techniques that we propose

in this paper are derived from a real-life project involving
medical data for gastroenterology patients. The requests of this
system were complex and had an evolution over time during the
software design and development process. Our approach was not
only to deal with the problem at hand, but to develop solutions
for a whole category of similar problems. Thus, using theoretical
concepts found in literature, we have identified the above
mentioned issues and have developed a set of solutions that
involve database design patterns, application architecture
solutions and user interface module prototypes.

The architecture of the system is client-server. We
used a relational database management system (DBMS) on the
server side. For the client side, we used a software development
environment which provides Object Oriented programming
facilities but it also has its own relational database engine, thus
enabling the use of client-side data views.

RESULTS
A. Modelling Time – The Temporal Property

Time is an omnipresent dimension that influences all
processes in our world. That includes also the evolution of
medical data, be that clinical data or research related. That being
said, one core requirement of a HIS will always be the ability to
record chronological data or the evolution of data over time.

We implemented such a mechanism in our database
by using a dual time-stamp which includes a start and an end
date. This allowed us to model intervals of time rather than just
have singular points in time, as would be the case when using
single timestamps. When singular time-points are needed, the
interval will be shrunken by registering the same date and time
for both its ends. This approach provides a complete model of
time. It requires however more processing power for
interrogating the database.

Every query that retrieves time-bound data has to be
filtered using a given or a predefined time interval. In order not
to overload the user interface with time filtering controls we
implemented a special table in the database that holds such time-
intervals for every user.
 As illustrated in figure no. 1, these time-interval
filtering parameters are then used in an intermediate layer of
views, stored on the server. The programmers that implement
various parts of the interface will use these views in their queries
instead of the basic tables. This way, in many cases, the
developers do not even need to know that the data they are

querying is time-bound. This approach proved to boost
development efficiency significantly.

Figure no. 1. Graphic representation of the use of the
filtering parameters

B. Modelling Subsets - The Allocation Process
Processes like assigning an item to a group or category

are often found as a requirement at the user-interface level of a
HIS. Usually, the user will assign a number of elements from a
set to a given group or category. In turn, the group or category is
usually represented by a record in a table, or an element in a
second set.

So, if we look at this process from a set theory point of
view, we need to associate some members of set A (i.e. a subset
of A) to a single member of set B. The user will usually browse
through set B and to each of its elements will allocate a subset of
A. We will call set B the set of “Parent items”. The subset of A
already allocated to a given parent will constitute the “Allocated
items” list and the rest of A will represent potential items to be
allocated, or “Candidate items”.

Figure no. 2. Graphic representation of the theory of items

When building the Graphical User Interface (GUI) we

represent the parent set using a screen that offers full CRUD
(Create, Retrieve, Update, Delete) functionality. This contains a
data-set that we call the Parent View. The allocation will take
place using a second screen synchronized with the first one.
Here, we see the two subsets of A, the already allocated items
and the candidate items along with the allocation/deallocation
buttons (figure no. 2). The two subsets of A are implemented
using two special views in the external level of the database.

PUBLIC HEALTH AND MANAGEMENT

AMT, v. II, no. 4, 2012, p. 182

The Allocated Items View
This view retrieves the database records of A that are

already allocated to the current record in B. The most important
feature of this view is that it is filtered according to the current
record of the Parent View, using a key of the parent table.
The Candidate Items View

This view has to retrieve the “Candidate Items” list
according to the current record of the Parent View. This means
that it will have to construct a subset of A by subtracting the
already allocated items from the entire set. Implementing such a
view as an SQL query requires the use of a NOT IN clause,
which can raise some performance issues.

If the table that represents set A holds large amounts
of data, more filtering options can be implemented. These will
be accessible through the GUI using specially designed controls.
C. The Open Attribute List Specialization

One of the challenges posed to the database designer
when building a HIS that will be used in medical research is that
not all the requirements can be formulated at an early stage.
More and more requirements will come as the system is used
and many of these will be database related. In order to prevent
the constant redesigning of the database due to this process, we
have used a design pattern that models some of the attributes of
an entity extensionally rather than intensionally. We
implemented this by a special table that holds attributes as
records and not as columns. This table can then be connected to
another table representing an entity via a many-to-many
relationship (which can also hold the values of the attributes if
needed). We called this design pattern an Open Attribute List
(OAL).

Figure no. 3. Graphic representation of Open Attribute List

A specific issue that we have encountered with this
design pattern was the extensive use of outer-joins when we
needed to convert these attributes stored as rows into columns in
various views (figure no. 3). These joins are imposed by a
convention that we set in place stating that every element of an
entity can have zero or more attributes recorded in the OAL.
This provides great flexibility but can have a negative impact on
the performance.

DISCUSSIONS
Healthcare Information Systems require highly

specialized solutions from an Information Technology
perspective.(3) However, this does not exclude the benefits of
generalization which produces reusable elements in the
development process. These elements can be database design
patterns, application architecture solutions and user interface

module prototypes. In the above presented approach, we have
focused on the first and the second from this list.

Most of the complexity of the system is modelled in
the views used to query the database. In order to keep the ever
growing set of views manageable, we recommend structuring it
into layers, a basic layer that should be stored on the database
server, and one or more “user-layers” that will be developed
using the views from the basic layer. The basic layer will
provide some often used denormalizations, as well as some
specific functionality, for instance filtering using predetermined
time-intervals. The user views will be part of the external level
of the database according to the ANSI/SPARC three levels
architecture.(4) They will be constructed using the basic layer
and/or the actual tables of the database.

This approach centralizes the maintenance for the
sensitive parts of the database, thus improving consistency and
development efficiency. However, for large databases, some
performance issues may arise due to the extra processing needed
for the basic layer of views.

CONCLUSIONS
By using the above presented techniques, software

developers can easily build user interfaces that present basic or
medium-to-complex functionality, while having the benefits of
standardization. This will reduce the development time and
more important, it will reduce the number of errors and/or
inconsistencies in the system. The use of the open-attribute list
specialization reduces the need for further interventions made by
the software development team in case of new requests, as this
type of data structure allows the end-user to define and
configure new attributes. For highly complex functionality, such
as modelling trees or multitrees (e.g. patient observation charts),
more advanced patterns and technologies are needed. Solutions
for this later issue will be presented in a future paper.
Acknowledgement:

This paper is partly supported by the Sectoral
Operational Programme Human Resources Development (SOP
HRD), financed from the European Social Fund and by the
Romanian Government under the contract number POSDRU
64331 and POSDRU 60782.

REFERENCES
1. Furnas GW, Zacks J. Multitrees: Enriching and Reusing

Hierarchical Structure. Proceedings of the ACM CHI 94
Human Factors in Computing Systems Conference; 1994.
p. 330-336.

2. Lewis B. Data-Oriented Application Engineering: An Idea
Whose Time Has Returned. The Data Administration
Newsletter - TDAN.com. January 1; 2007.

3. Muji M, Ciupa RV, et al. Database Design Patterns for
Healthcare Information Systems. MEDITECH 2009,
IFMBE Proceedings 26, p. 63-66.

4. Date CJ. An Introduction to Database Systems (8th
edition). Addison-Wesley; 2004.

